jenn
Getting Started
1. Installation
2. Data Structures
3. Usage
4. More Examples
5. Other features
API Docs
1. User API
2. Core API
Appendix
Index
jenn
Index
Edit on GitHub
Index
_
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
I
|
J
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
V
_
__call__() (jenn.core.optimization.Backtracking method)
(jenn.core.optimization.LineSearch method)
(jenn.core.optimization.Update method)
A
Activation (class in jenn.core.activation)
ADAM (class in jenn.core.optimization)
ADAMOptimizer (class in jenn.core.optimization)
avg() (in module jenn.core.data)
avg_x (jenn.core.data.Dataset property)
avg_y (jenn.core.data.Dataset property)
B
Backtracking (class in jenn.core.optimization)
C
Cache (class in jenn.core.cache)
Cost (class in jenn.core.cost)
D
Dataset (class in jenn.core.data)
denormalize() (in module jenn.core.data)
denormalize_partials() (in module jenn.core.data)
E
evaluate() (jenn.core.activation.Activation class method)
(jenn.core.activation.Linear class method)
(jenn.core.activation.Relu class method)
(jenn.core.activation.Tanh class method)
(jenn.core.cost.Cost method)
(jenn.core.cost.GradientEnhancement method)
(jenn.core.cost.Regularization method)
(jenn.core.cost.SquaredLoss method)
eye() (in module jenn.core.propagation)
F
finite_difference() (in module jenn.utilities)
first_derivative() (jenn.core.activation.Activation class method)
(jenn.core.activation.Linear class method)
(jenn.core.activation.Relu class method)
(jenn.core.activation.Tanh class method)
first_layer_forward() (in module jenn.core.propagation)
first_layer_partials() (in module jenn.core.propagation)
fit() (jenn.core.model.NeuralNet method)
(jenn.NeuralNet method)
from_jmp() (in module jenn.utilities)
G
GD (class in jenn.core.optimization)
GDOptimizer (class in jenn.core.optimization)
gradient_enhancement() (in module jenn.core.propagation)
GradientEnhancement (class in jenn.core.cost)
I
initialize() (jenn.core.parameters.Parameters method)
J
jenn
module
jenn.core.activation
module
jenn.core.cache
module
jenn.core.cost
module
jenn.core.data
module
jenn.core.model
module
jenn.core.optimization
module
jenn.core.parameters
module
jenn.core.propagation
module
jenn.core.training
module
jenn.synthetic_data
module
jenn.utilities
module
L
L (jenn.core.parameters.Parameters property)
last_layer_backward() (in module jenn.core.propagation)
layers (jenn.core.parameters.Parameters property)
Linear (class in jenn.core.activation)
LineSearch (class in jenn.core.optimization)
load() (jenn.core.model.NeuralNet class method)
(jenn.core.parameters.Parameters class method)
(jenn.NeuralNet class method)
M
m (jenn.core.cache.Cache property)
(jenn.core.data.Dataset property)
mini_batches() (in module jenn.core.data)
(jenn.core.data.Dataset method)
minimize() (jenn.core.optimization.Optimizer method)
model_backward() (in module jenn.core.propagation)
model_forward() (in module jenn.core.propagation)
model_partials_forward() (in module jenn.core.propagation)
module
jenn
jenn.core.activation
jenn.core.cache
jenn.core.cost
jenn.core.data
jenn.core.model
jenn.core.optimization
jenn.core.parameters
jenn.core.propagation
jenn.core.training
jenn.synthetic_data
jenn.utilities
N
n_x (jenn.core.cache.Cache property)
(jenn.core.data.Dataset property)
(jenn.core.parameters.Parameters property)
n_y (jenn.core.cache.Cache property)
(jenn.core.data.Dataset property)
(jenn.core.parameters.Parameters property)
NeuralNet (class in jenn)
(class in jenn.core.model)
next_layer_backward() (in module jenn.core.propagation)
next_layer_forward() (in module jenn.core.propagation)
next_layer_partials() (in module jenn.core.propagation)
normalize() (in module jenn.core.data)
(jenn.core.data.Dataset method)
normalize_partials() (in module jenn.core.data)
O
objective_function() (in module jenn.core.training)
objective_gradient() (in module jenn.core.training)
Optimizer (class in jenn.core.optimization)
P
Parameters (class in jenn.core.parameters)
partials (jenn.core.parameters.Parameters property)
partials_forward() (in module jenn.core.propagation)
plot_actual_by_predicted() (in module jenn)
plot_contours() (in module jenn)
plot_convergence() (in module jenn)
plot_goodness_of_fit() (in module jenn)
plot_histogram() (in module jenn)
plot_residual_by_predicted() (in module jenn)
plot_sensitivity_profiles() (in module jenn)
predict() (jenn.core.model.NeuralNet method)
(jenn.NeuralNet method)
predict_partials() (jenn.core.model.NeuralNet method)
(jenn.NeuralNet method)
R
rbf() (in module jenn.utilities)
Regularization (class in jenn.core.cost)
Relu (class in jenn.core.activation)
S
sample() (in module jenn.utilities)
save() (jenn.core.model.NeuralNet method)
(jenn.core.parameters.Parameters method)
(jenn.NeuralNet method)
second_derivative() (jenn.core.activation.Activation class method)
(jenn.core.activation.Linear class method)
(jenn.core.activation.Relu class method)
(jenn.core.activation.Tanh class method)
set_weights() (jenn.core.data.Dataset method)
SquaredLoss (class in jenn.core.cost)
stack() (jenn.core.parameters.Parameters method)
stack_partials() (jenn.core.parameters.Parameters method)
stack_partials_per_layer() (jenn.core.parameters.Parameters method)
stack_per_layer() (jenn.core.parameters.Parameters method)
std() (in module jenn.core.data)
std_x (jenn.core.data.Dataset property)
std_y (jenn.core.data.Dataset property)
T
Tanh (class in jenn.core.activation)
train_model() (in module jenn.core.training)
U
unstack() (jenn.core.parameters.Parameters method)
unstack_partials() (jenn.core.parameters.Parameters method)
Update (class in jenn.core.optimization)
V
validate_parameters() (jenn.core.parameters.Parameters method)