jenn
Getting Started
1. Installation
2. Data Structures
3. Usage
4. More Examples
5. Other features
API Docs
1. User API
2. Core API
Appendix
Index
jenn
Index
Edit on GitHub
Index
_
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
I
|
J
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
_
__call__() (jenn.core.optimization.Backtracking method)
(jenn.core.optimization.LineSearch method)
(jenn.core.optimization.Update method)
A
Activation (class in jenn.core.activation)
actual_by_predicted() (in module jenn.utils.plot)
ADAM (class in jenn.core.optimization)
ADAMOptimizer (class in jenn.core.optimization)
avg() (in module jenn.core.data)
avg_x (jenn.core.data.Dataset property)
avg_y (jenn.core.data.Dataset property)
B
Backtracking (class in jenn.core.optimization)
C
Cache (class in jenn.core.cache)
contours() (in module jenn.utils.plot)
convergence() (in module jenn.utils.plot)
Cost (class in jenn.core.cost)
D
Dataset (class in jenn.core.data)
denormalize() (in module jenn.core.data)
denormalize_partials() (in module jenn.core.data)
E
evaluate() (jenn.core.activation.Activation class method)
(jenn.core.activation.Linear class method)
(jenn.core.activation.Relu class method)
(jenn.core.activation.Tanh class method)
(jenn.core.cost.Cost method)
(jenn.core.cost.GradientEnhancement method)
(jenn.core.cost.Regularization method)
(jenn.core.cost.SquaredLoss method)
(jenn.model.NeuralNet method)
(jenn.synthetic.Linear class method)
(jenn.synthetic.Parabola class method)
(jenn.synthetic.Rastrigin class method)
(jenn.synthetic.Rosenbrock class method)
(jenn.synthetic.Sinusoid class method)
(jenn.synthetic.TestFunction method)
eye() (in module jenn.core.propagation)
F
first_derivative() (jenn.core.activation.Activation class method)
(jenn.core.activation.Linear class method)
(jenn.core.activation.Relu class method)
(jenn.core.activation.Tanh class method)
(jenn.synthetic.Linear class method)
(jenn.synthetic.Parabola class method)
(jenn.synthetic.Rastrigin class method)
(jenn.synthetic.Rosenbrock class method)
(jenn.synthetic.Sinusoid class method)
(jenn.synthetic.TestFunction method)
first_derivative_FD() (jenn.synthetic.TestFunction class method)
first_layer_forward() (in module jenn.core.propagation)
first_layer_partials() (in module jenn.core.propagation)
fit() (jenn.model.NeuralNet method)
G
GD (class in jenn.core.optimization)
GDOptimizer (class in jenn.core.optimization)
goodness_of_fit() (in module jenn.utils.plot)
gradient_enhancement() (in module jenn.core.propagation)
GradientEnhancement (class in jenn.core.cost)
I
initialize() (jenn.core.parameters.Parameters method)
J
jenn.core.activation
module
jenn.core.cache
module
jenn.core.cost
module
jenn.core.data
module
jenn.core.optimization
module
jenn.core.parameters
module
jenn.core.propagation
module
jenn.core.training
module
jenn.model
module
jenn.synthetic
module
jenn.utils.metrics
module
jenn.utils.plot
module
L
L (jenn.core.parameters.Parameters property)
last_layer_backward() (in module jenn.core.propagation)
layers (jenn.core.parameters.Parameters property)
Linear (class in jenn.core.activation)
(class in jenn.synthetic)
LineSearch (class in jenn.core.optimization)
load() (jenn.core.parameters.Parameters method)
(jenn.model.NeuralNet method)
M
m (jenn.core.cache.Cache property)
(jenn.core.data.Dataset property)
mini_batches() (in module jenn.core.data)
(jenn.core.data.Dataset method)
minimize() (jenn.core.optimization.Optimizer method)
model_backward() (in module jenn.core.propagation)
model_forward() (in module jenn.core.propagation)
model_partials_forward() (in module jenn.core.propagation)
module
jenn.core.activation
jenn.core.cache
jenn.core.cost
jenn.core.data
jenn.core.optimization
jenn.core.parameters
jenn.core.propagation
jenn.core.training
jenn.model
jenn.synthetic
jenn.utils.metrics
jenn.utils.plot
N
n_x (jenn.core.cache.Cache property)
(jenn.core.data.Dataset property)
(jenn.core.parameters.Parameters property)
n_y (jenn.core.cache.Cache property)
(jenn.core.data.Dataset property)
(jenn.core.parameters.Parameters property)
NeuralNet (class in jenn.model)
next_layer_backward() (in module jenn.core.propagation)
next_layer_forward() (in module jenn.core.propagation)
next_layer_partials() (in module jenn.core.propagation)
normalize() (in module jenn.core.data)
(jenn.core.data.Dataset method)
normalize_partials() (in module jenn.core.data)
O
objective_function() (in module jenn.core.training)
objective_gradient() (in module jenn.core.training)
Optimizer (class in jenn.core.optimization)
P
Parabola (class in jenn.synthetic)
Parameters (class in jenn.core.parameters)
partials (jenn.core.parameters.Parameters property)
partials_forward() (in module jenn.core.propagation)
predict() (jenn.model.NeuralNet method)
predict_partials() (jenn.model.NeuralNet method)
R
r_square() (in module jenn.utils.metrics)
Rastrigin (class in jenn.synthetic)
Regularization (class in jenn.core.cost)
Relu (class in jenn.core.activation)
residuals_by_predicted() (in module jenn.utils.plot)
Rosenbrock (class in jenn.synthetic)
S
sample() (jenn.synthetic.Linear class method)
(jenn.synthetic.Parabola class method)
(jenn.synthetic.Rastrigin class method)
(jenn.synthetic.Rosenbrock class method)
(jenn.synthetic.Sinusoid class method)
(jenn.synthetic.TestFunction class method)
save() (jenn.core.parameters.Parameters method)
(jenn.model.NeuralNet method)
second_derivative() (jenn.core.activation.Activation class method)
(jenn.core.activation.Linear class method)
(jenn.core.activation.Relu class method)
(jenn.core.activation.Tanh class method)
sensitivity_profile() (in module jenn.utils.plot)
sensitivity_profiles() (in module jenn.utils.plot)
set_weights() (jenn.core.data.Dataset method)
Sinusoid (class in jenn.synthetic)
SquaredLoss (class in jenn.core.cost)
stack() (jenn.core.parameters.Parameters method)
stack_partials() (jenn.core.parameters.Parameters method)
stack_partials_per_layer() (jenn.core.parameters.Parameters method)
stack_per_layer() (jenn.core.parameters.Parameters method)
std() (in module jenn.core.data)
std_x (jenn.core.data.Dataset property)
std_y (jenn.core.data.Dataset property)
T
Tanh (class in jenn.core.activation)
TestFunction (class in jenn.synthetic)
train_model() (in module jenn.core.training)
U
unstack() (jenn.core.parameters.Parameters method)
unstack_partials() (jenn.core.parameters.Parameters method)
Update (class in jenn.core.optimization)